

Patient Plan QA Device for Particle Therapy Fast 2D and 3D Dose Measurement for Patient QA in Water

- MatriXX^{PT} for measurements under high dose rate Proton beam type deliveries
- Patient QA in real water
- > Ability to acquire more data for verification

High positioning accuracy with IBA unique non-contact absolute position sensor

TREE OF MIN

> Dedicated water phantom with motorized

MatriXX^{PT} detector

Efficient, Integration, Safety

Patient treatment through Advanced 3D Plan QA in Particle Therapy
 The only system to combine 2D area detector with water phantom

Key Benefits

Time Saving*

¹ Actual patient dose measurements consist of 10 individual measurements of 2 min. each (one per depth dose)

² Conventional: Physicist 9x walks into treatment room and changes depth of solid water to simulate next water depth (20 min. measurements + 9 times ≈3 min. to open vault door, enter room, remove ...)

³ DigiPhantPT continuous process entirely operated from the control room, no walking into the treatment room

3 Steps and get more Patient QA dose data

Patient QA in real water

- Reduce artifacts and uncertainties from solid water phantoms
- Feasible to collect PDD/3D dose by MatriXX^{PT} in short time

Your optimized solution for

- Unique 3D plan verification solution including a MatriXX^{PT} and a dedicated water Phantom system.
- Half the time needed for pre-treatment verification in comparison with methods using 2D Array detectors and solid water phantoms systems.

Fastest. mostAccurate. mostReliable.

DigiPhant

. ...

Hardware

MatriXX^{PT} and Dedicated Phantom

Specifications of MatriXX'		
Number of Chambers and Type	1020 vented pixel ionization chambers	
Active Area	24.4 x 24.4 cm ²	
Sensor Layout	Matrix in a plane arranged in a 32 x 32 cm grid	
Pixel Distance	7.62 mm center to center	
Chamber Size/ Volume	4.5 (Ø) x 2 (h) mm/ 0.032 cm³	
Nominal Sensitivity	1.4 nC/Gy	
Dose Rate Range	5mGy/s up to 150 Gy/s	
Effective Point of Measurement	6 mm from surface	
Recombination	<1% for all relevant clinically used proton beam currents (up \sim 5-7nA)	
Sampling time:	100ms up to 5min	

Specifications of Dedicated Phantom		
Position accuracy	+/-0.5mm	
Scanning speed	Up to 20 mm/sec	
Scanning Range	310mm/ From 3cm up to 33cm WET	

Key Features...

- Replaces time consuming manual solutions
- > Measuring 2D and 3D dose distribution in water
- Quick Calibration
- Analysis of relative and absorbed dose

DT an an aDT

Data storage and evaluation in OmniPro-I'mRT

CONTACT

 dosimetry-info@iba-group.com

 Europe, Middle East, Africa | ☎ +49 9128 607 0

 North America, Latin America | ☎ +1 901 386 2242

 Asia Pacific | ☎ +86 10 8080 9288

iba-dosimetry.com

QA and dosimetry time saving varies depending on QA protocols and applied dosimetry tools. Please consult IBA Dosimetry for details.